
COMMUTATION RELATIONS IN YANGIAN-TYPE ALGEBRAS

RODION ZAYTSEV

Abstract. In paper [Ols22], G.I. Olshanski showed that there are four stable formulas
for the commutator in the universal enveloping algebra 𝑈(gl(𝑁,Ω)) (where Ω = C𝐿). In
a recent paper [OS23] Nikita Safonkin and G.I. Olshanski generalized these results for
an arbitrary algebra Ω.

This paper addresses one of the problems posed in section 8 of [Ols22], namely finding
a more explicit presentation of the formula. The question is of interest, because the
formulas are used in a construction which generalizes that of Yangians 𝑌𝑑 = 𝑌 (gl(𝑑,C)).

In this work a recursive procedure to compute the formulas is derived. Several re-
sults regarding the structure of the formulas made through computer experiments are
formulated and proved.
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1. Preliminaries

The Yangian of the Lie algebra gl(𝑁,C) can be defined as the associative algebra with

generators 𝑡
(𝑚)
𝑖𝑗 , where 1 ≤ 𝑖, 𝑗 ≤ 𝑑,𝑚 = 1, 2 . . . and defining quadratic-linear relations

[MNO96]:

[𝑡
(𝑚)
𝑖𝑗 , 𝑡

(𝑛)
𝑘𝑙 ] =

min(𝑚,𝑛)∑︁
𝑟=0

𝑡
(𝑟)
𝑘𝑗 𝑡

(𝑚+𝑛−𝑟−1)
𝑖𝑙 − 𝑡

(𝑚+𝑛−𝑟−1)
𝑘𝑗 𝑡

(𝑟)
𝑖𝑙

where by convention 𝑡
(0)
𝑎𝑏 = 𝛿𝑎𝑏. The above relations can be written in terms of 𝑅-matrix

formalism. An analogue of 𝑅-matrix formalism has not been found for the general case
we are about to discuss. That is one of the reasons why it is difficult to work with.
The generalization of the Yangian construction is determined by an arbitrary associative
algebra Ω. The conventional Yangian is obtained for Ω = C. The commutator relations are
taken from the universal enveloping algebra 𝑈(gl(𝑁,Ω)). To a word 𝑤 = 𝑤1⊗𝑤2 · · ·⊗𝑤𝑛

from tensor algebra over Ω we can associate an element of the universal enveloping algebra
𝑈(gl(𝑁,Ω))

𝑒𝑖𝑗(𝑤) =
𝑁∑︁

𝑘1,...,𝑘𝑛−1=1

𝐸𝑖𝑘1(𝑤1)𝐸𝑘1𝑘2(𝑤2) · · ·𝐸𝑘𝑛−1𝑗(𝑤𝑛) 1 ≤ 𝑖, 𝑗 ≤ 𝑁

In [Ols22] lemma 7.1 it is proved that the commutators of the above elements can be
expressed by one of the four formulas below

[𝑒𝑖𝑗(𝑤), 𝑒𝑘𝑙(𝑤̃)] =
∑︁
𝑧′,𝑧′′

𝜙1𝑒𝑘𝑗(𝑧
′)𝑒𝑖𝑙(𝑧

′′) + 𝜓1𝑒𝑖𝑗(𝑧
′)𝑒𝑘𝑙(𝑧

′′) (1)

[𝑒𝑖𝑗(𝑤), 𝑒𝑘𝑙(𝑤̃)] =
∑︁
𝑧′,𝑧′′

𝜙2𝑒𝑘𝑗(𝑧
′)𝑒𝑖𝑙(𝑧

′′) + 𝜓2𝑒𝑘𝑙(𝑧
′)𝑒𝑖𝑗(𝑧

′′) (2)

[𝑒𝑖𝑗(𝑤), 𝑒𝑘𝑙(𝑤̃)] =
∑︁
𝑧′,𝑧′′

𝜙3𝑒𝑖𝑙(𝑧
′)𝑒𝑘𝑗(𝑧

′′) + 𝜓3𝑒𝑖𝑗(𝑧
′)𝑒𝑘𝑙(𝑧

′′) (3)

[𝑒𝑖𝑗(𝑤), 𝑒𝑘𝑙(𝑤̃)] =
∑︁
𝑧′,𝑧′′

𝜙4𝑒𝑖𝑙(𝑧
′)𝑒𝑘𝑗(𝑧

′′) + 𝜓4𝑒𝑘𝑙(𝑧
′)𝑒𝑖𝑗(𝑧

′′) (4)

The above formulas are stable, in a sense that they do not depend on 𝑁 . Under additional
restriction that the lengths 𝑙(𝑧′) + 𝑙(𝑧′′) of the 𝜙-part are in 𝑛− 1, 𝑛− 3 . . ., where 𝑛 =
𝑙(𝑤) + 𝑙(𝑤̃) is the total length of original words, and the lengths 𝑙(𝑧′) + 𝑙(𝑧′′) are in
𝑛− 2, 𝑛− 4 . . ., the above four formulas are uniquely determined. These formulas can
be used as defining relations in the generalized construction of Yangian. In this work
we show that the formulas obey certain combinatorial restrictions and satisfy certain
identities, thus partially achieving the goal of an explicit description of the formulas.

2. Main algorithm

First we introduce some notation along with obvious identities, then we state the algorithm
to compute the formulas, and afterwards we prove it.

2.1. Notation. Let’s fix an arbitrary associative algebra Ω. We will call elements of this
algebra letters. Now consider the tensor algebra 𝑇 (Ω). We will call the elements of this
tensor algebra words and denote the length of a word 𝑤 by 𝑙(𝑤) - it is the number of
letters the word consists of. To avoid writing redundant symbols, instead of 𝑒𝑖𝑗(𝑤) we can
just write 𝑤𝑖𝑗 and treat it as an element of 𝑇 (Ω) to which indices were added. Moreover,
we can consider the operation of adding indices 𝑖𝑗 as a map
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𝑖𝑗 : 𝑇 (Ω) → 𝑈(gl(𝑁,Ω))

(𝑤)𝑖𝑗 ↦→ 𝑒𝑖𝑗(𝑤)

Let’s extend this notion to quadratic terms that arise in formulas. Let 𝑇 (Ω)�𝑇 (Ω) denote
the tensor product of two copies of 𝑇 (Ω - we use the symbol � instead of conventional ⊗
to distinguish it from the tensor product within 𝑇 (Ω). Then we can consider the map

𝑖𝑗
𝑘𝑙 : 𝑇 (Ω) � 𝑇 (Ω) → 𝑈(gl(𝑁,Ω))

(𝑤 � 𝑤̃)𝑖𝑗𝑘𝑙 ↦→ 𝑤𝑖𝑗𝑤̃𝑘𝑙

Given the uniqueness of the 𝜙 and 𝜓 parts, we obtain well-defined maps

Φ𝑖 : 𝑇 (Ω) � 𝑇 (Ω) → 𝑇 (Ω) � 𝑇 (Ω)

and
Ψ𝑖 : 𝑇 (Ω) � 𝑇 (Ω) → 𝑇 (Ω) � 𝑇 (Ω)

such that their composition with the appropriate index maps described above will give
the expression corresponding to the 𝜙 and 𝜓 respectively:

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = Φ1(𝑥, 𝑦)𝑘𝑗𝑖𝑙 + Ψ1(𝑥, 𝑦)𝑖𝑗𝑘𝑙 (1′)

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = Φ2(𝑥, 𝑦)𝑘𝑗𝑖𝑙 + Ψ2(𝑥, 𝑦)𝑘𝑙𝑖𝑗 (2′)

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = Φ3(𝑥, 𝑦)𝑖𝑙𝑘𝑗 + Ψ3(𝑥, 𝑦)𝑖𝑗𝑘𝑙 (3′)

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = Φ4(𝑥, 𝑦)𝑖𝑙𝑘𝑗 + Ψ4(𝑥, 𝑦)𝑘𝑙𝑖𝑗 (4′)

Here we are abusing the notation: [𝑥, 𝑦]𝑖𝑗𝑘𝑙 denotes [𝑥𝑖𝑗, 𝑦𝑘𝑙]. In other words, we apply the
tensor product of the index maps

𝑇 (Ω) � 𝑇 (Ω) → 𝑈(gl(𝑁,Ω)) ⊗ 𝑈(gl(𝑁,Ω))

𝑥� 𝑦 ↦→ 𝑥𝑖𝑗 ⊗ 𝑦𝑘𝑙

and then take the commutator. Thus we can regard the commutator with specified indices
as a map

[·]𝑖𝑗𝑘𝑙 : 𝑇 (Ω) � 𝑇 (Ω) → 𝑈(gl(𝑁,Ω))

[𝑥� 𝑦]𝑖𝑗𝑘𝑙 ↦→ [𝑥𝑖𝑗, 𝑦𝑘𝑙]

Each of the four formulas allows us to split this map as

(𝑇 (Ω) � 𝑇 (Ω))⊕2

𝑇 (Ω) � 𝑇 (Ω) 𝑈(gl(𝑁,Ω))

Φ𝑖⊕Ψ𝑖

[·]𝑖𝑗𝑘𝑙

Observing that
[𝑥𝑖𝑗, 𝑦𝑘𝑙] = −[𝑦𝑘𝑙, 𝑥𝑖𝑗]

and expanding l.h.s. using first formula, and the r.h.s. using the fourth, we obtain

Φ1(𝑥, 𝑦) = −Φ4(𝑦, 𝑥)

Ψ1(𝑥, 𝑦) = −Ψ4(𝑦, 𝑥)

Similarly
Φ2(𝑥, 𝑦) = −Φ3(𝑦, 𝑥)

Ψ2(𝑥, 𝑦) = −Ψ3(𝑦, 𝑥)
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We will also need one more operation ∘, which swaps the two components of 𝑇 (Ω)�𝑇 (Ω):

(𝑥� 𝑦)∘ = 𝑦 � 𝑥

Since

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = (𝑥� 𝑦)𝑖𝑗𝑘𝑙 − (𝑦 � 𝑥)𝑘𝑙𝑖𝑗

i.e.

(𝑥� 𝑦)𝑖𝑗𝑘𝑙 = (𝑦 � 𝑥)𝑘𝑙𝑖𝑗 + [𝑥, 𝑦]𝑖𝑗𝑘𝑙

we have the identity

𝜔𝑖𝑗
𝑘𝑙 = (𝜔∘)𝑘𝑙𝑖𝑗 + [𝜔]𝑖𝑗𝑘𝑙 ∀ 𝜔 ∈ 𝑇 (Ω) � 𝑇 (Ω)

2.2. Algorithm. To expand the commutator [𝑥, 𝑦] using one of the formulas 1′ − 4′,
either 𝑙(𝑥) = 𝑙(𝑦) = 1 and we are in the base case (explained below). Otherwise we can
assume WLOG that 𝑙(𝑥) > 1, using the relationships. Next we split 𝑥 = 𝑥′𝑥′′ and use the
appropriate formulas which recursively require to know the formulas for shorter words.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ1(𝑥
′𝑥′′, 𝑦) = (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

∘
+ Φ4 (Ψ4(𝑥

′, 𝑦)𝑥′′)

+Ψ4 (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
Ψ1(𝑥

′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥
′′, 𝑦) + Φ4 (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

+ (Ψ4(𝑥
′, 𝑦)𝑥′′)

∘
+ Ψ4 (Ψ4(𝑥

′, 𝑦)𝑥′′)

(for 1′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ2(𝑥

′𝑥′′, 𝑦) = (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
∘

+ Φ2 (𝑥′Ψ3(𝑥
′′, 𝑦))

+Ψ2 (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
Ψ2(𝑥

′𝑥′′, 𝑦) = Ψ4(𝑥
′, 𝑦)𝑥′′ + Φ2 (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

+ (𝑥′Ψ3(𝑥
′′, 𝑦))

∘
+ Ψ2 (𝑥′Ψ3(𝑥

′′, 𝑦))

(for 2′)

{︃
Φ3(𝑥

′𝑥′′, 𝑦) = Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦) + Φ2 (Ψ4(𝑥
′, 𝑦)𝑥′′)

Ψ3(𝑥
′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥

′′, 𝑦) + (Ψ4(𝑥
′, 𝑦)𝑥′′)∘ + Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)
(for 3′){︃

Φ4(𝑥
′𝑥′′, 𝑦) = Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦) + Φ4 (𝑥′Ψ3(𝑥

′′, 𝑦))

Ψ4(𝑥
′𝑥′′, 𝑦) = Ψ4(𝑥

′, 𝑦)𝑥′′ + (𝑥′Ψ3(𝑥
′′, 𝑦))∘ + Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))
(for 4′)

And here are the formulas in case we want to split the second word instead of the first{︃
Φ1(𝑥, 𝑦

′𝑦′′) = Φ1(𝑥, 𝑦
′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦

′′) + Φ4 (𝑦′Ψ2(𝑥, 𝑦
′′))

Ψ1(𝑥, 𝑦
′𝑦′′) = Ψ1(𝑥, 𝑦

′)𝑦′′ + (𝑦′Ψ2(𝑥, 𝑦
′′))∘ + Ψ4 (𝑦′Ψ2(𝑥, 𝑦

′′))
(for 1′){︃

Φ2(𝑥, 𝑦
′𝑦′′) = Φ1(𝑥, 𝑦

′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦
′′) + Φ2 (Ψ1(𝑥, 𝑦

′)𝑦′′)

Ψ2(𝑥, 𝑦
′𝑦′′) = 𝑦′Ψ2(𝑥, 𝑦

′′) + (Ψ1(𝑥, 𝑦
′)𝑦′′)∘ + Ψ2 (Ψ1(𝑥, 𝑦

′)𝑦′′)
(for 2′)⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ3(𝑥, 𝑦
′𝑦′′) = (Φ1(𝑥, 𝑦

′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦
′′))

∘
+ Φ2 (𝑦′Ψ2(𝑥, 𝑦

′′))

+Ψ2 (Φ1(𝑥, 𝑦
′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦

′′))
Ψ3(𝑥, 𝑦

′𝑦′′) = Ψ1(𝑥, 𝑦
′)𝑦′′ + Φ2 (Φ1(𝑥, 𝑦

′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦
′′))

+ (𝑦′Ψ3(𝑥, 𝑦
′′))

∘
+ Ψ2 (𝑦′Ψ2(𝑥, 𝑦

′′))

(for 3′)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ4(𝑥, 𝑦

′𝑦′′) = (Φ1(𝑥, 𝑦
′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦

′′))
∘

+ Φ4 (Ψ1(𝑥, 𝑦
′)𝑦′′)

+Ψ4 (Φ1(𝑥, 𝑦
′)𝑦′′ + 𝑦′Φ3(𝑥, 𝑦

′′))
Ψ4(𝑥, 𝑦

′𝑦′′) = 𝑦′Ψ2(𝑥, 𝑦
′′) + Φ4 (Φ1(𝑥, 𝑦

′)𝑦′′ + 𝑦′Φ2(𝑥, 𝑦
′′))

+ (Ψ1(𝑥, 𝑦
′)𝑦′′)

∘
+ Ψ4 (Ψ1(𝑥, 𝑦

′)𝑦′′)

(for 4′)

2.2.1. Base case.

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = [𝑒𝑖𝑗(𝑥), 𝑒𝑘𝑙(𝑦)] = 𝑒𝑖𝑙(𝑥𝑦)𝛿𝑘𝑗 − 𝑒𝑘𝑗(𝑦𝑥)𝛿𝑖𝑙
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Rewriting it as
𝛿𝑘𝑗𝑒𝑖𝑙(𝑥𝑦) − 𝑒𝑘𝑗(𝑦𝑥)𝛿𝑖𝑙 = (𝜀� 𝑥𝑦 − 𝑦𝑥� 𝜀)𝑘𝑗𝑖𝑙

we recognize the Φ part of formulas 1 and 2 (where 𝜀 is the identity of 𝑇 (Ω)). Rewriting
as

𝑒𝑖𝑙(𝑥𝑦)𝛿𝑘𝑗 − 𝛿𝑖𝑙𝑒𝑘𝑗(𝑦𝑥) = (𝑥𝑦 � 𝜀− 𝜀� 𝑥𝑦)𝑖𝑙𝑘𝑗
we obtain the Φ part of formulas 3 and 4.

2.3. Proof of the algorithm. We will prove the case when the first word is split. If we
apply symmetries to both sides of identities when the first word is split, we will obtain
the formulas for the case when the second word is split.
Assume 𝑙(𝑥) > 1, so that 𝑥 = 𝑥′𝑥′′. Applying Leibniz rule, we have

[𝑥𝑖𝑗, 𝑦𝑘𝑙] = [(𝑥′𝑥′′)𝑖𝑗, 𝑦𝑘𝑙] =
∑︁
𝑎

[𝑥′𝑖𝑎𝑥
′′
𝑎𝑗, 𝑦𝑘𝑙] =

=
∑︁
𝑎

[𝑥′𝑖𝑎, 𝑦𝑘𝑙]𝑥
′′
𝑎𝑗 + 𝑥′𝑖𝑎[𝑥

′′
𝑎𝑗, 𝑦𝑘𝑙]

Next, we expand the commutator in the first summand using the fourth equation and in
the second - using the third.∑︁

𝑎

[𝑥′𝑖𝑎, 𝑦𝑘𝑙]𝑥
′′
𝑎𝑗 =

∑︁
𝑎

Φ4(𝑥
′, 𝑦)𝑖𝑙𝑘𝑎𝑥

′′
𝑎𝑗 + Ψ4(𝑥

′, 𝑦)𝑘𝑙𝑖𝑎𝑥
′′
𝑎𝑗 =

(Φ4(𝑥
′, 𝑦)𝑥′′)

𝑖𝑙
𝑘𝑗 + (Ψ4(𝑥

′, 𝑦)𝑥′′)
𝑘𝑙
𝑖𝑗

Similarly we get ∑︁
𝑎

𝑥′𝑖𝑎[𝑥
′′
𝑎𝑗, 𝑦𝑘𝑙] =

∑︁
𝑎

𝑥′𝑖𝑎Φ3(𝑥
′′, 𝑦)𝑎𝑙𝑘𝑗 + 𝑥′𝑖𝑎Ψ3(𝑥

′′, 𝑦)𝑎𝑗𝑘𝑙 =

(𝑥′Φ3(𝑥
′′, 𝑦))

𝑖𝑙
𝑘𝑗 + (𝑥′Ψ3(𝑥

′′, 𝑦))
𝑖𝑗
𝑘𝑙

Therefore

[𝑥′𝑥′′, 𝑦]𝑖𝑗𝑘𝑙 = (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
𝑖𝑙
𝑘𝑗 + (Ψ4(𝑥

′, 𝑦)𝑥′′)
𝑘𝑙
𝑖𝑗 + (𝑥′Ψ3(𝑥

′′, 𝑦))
𝑖𝑗
𝑘𝑙

Finally, we need to convert each of the terms above so that it has the indices corresponding
to one of the formulas 1′ − 4′. The easy part is when we want to compute the third or
fourth formula, which is why we will do them first.

Fourth formula. Applying the identity to 𝜔 = 𝑥′Ψ3(𝑥
′′, 𝑦) we obtain

(𝑥′Ψ3(𝑥, 𝑦))
𝑖𝑗
𝑘𝑙 =

(︀
(𝑥′Ψ3(𝑥, 𝑦))

∘)︀𝑘𝑙
𝑖𝑗

+ [𝑥′Ψ3(𝑥, 𝑦)]
𝑖𝑗
𝑘𝑙 =(︀

(𝑥′Ψ3(𝑥, 𝑦))
∘)︀𝑘𝑙

𝑖𝑗
+ Φ4 (𝑥′Ψ3(𝑥, 𝑦))

𝑖𝑙
𝑘𝑗 + Ψ4 (𝑥′Ψ3(𝑥, 𝑦))

𝑘𝑙
𝑖𝑗

Therefore the recursive procedure for the fourth formula is

[𝑥′𝑥′′, 𝑦]𝑖𝑗𝑘𝑙 =

(Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦)) + Φ4 (𝑥′Ψ3(𝑥
′′, 𝑦)))

𝑖𝑙
𝑘𝑗

+
(︀
Ψ4(𝑥

′, 𝑦)𝑥′′ + (𝑥′Ψ3(𝑥
′′, 𝑦))

∘
+ Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))
)︀𝑘𝑙
𝑖𝑗

In other words{︃
Φ4(𝑥

′𝑥′′, 𝑦) = Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦) + Φ4 (𝑥′Ψ3(𝑥
′′, 𝑦))

Ψ4(𝑥
′𝑥′′, 𝑦) = Ψ4(𝑥

′, 𝑦)𝑥′′ + (𝑥′Ψ3(𝑥
′′, 𝑦))∘ + Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))
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Third formula. This time we must convert (Ψ4(𝑥
′, 𝑦)𝑥′′)𝑘𝑙𝑖𝑗 term.

(Ψ4(𝑥
′, 𝑦)𝑥′′)

𝑘𝑙
𝑖𝑗 =

(︀
(Ψ4(𝑥

′, 𝑦)𝑥′′)
∘)︀𝑖𝑗

𝑘𝑙
+ [(Ψ4(𝑥

′, 𝑦)𝑥′′)]
𝑘𝑙
𝑖𝑗

Applying the second formula we can rewrite the second term above as

[(Ψ4(𝑥
′, 𝑦)𝑥′′)]

𝑘𝑙
𝑖𝑗 = Φ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)
𝑖𝑙
𝑘𝑗 + Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)
𝑖𝑗
𝑘𝑙

Thus {︃
Φ3(𝑥

′𝑥′′, 𝑦) = Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦) + Φ2 (Ψ4(𝑥
′, 𝑦)𝑥′′)

Ψ3(𝑥
′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥

′′, 𝑦) + (Ψ4(𝑥
′, 𝑦)𝑥′′)∘ + Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)

Second formula. This time we need to convert two terms: (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))𝑖𝑙𝑘𝑗
and (𝑥′Ψ3(𝑥

′′, 𝑦))𝑖𝑗𝑘𝑙. For the first term we have

(Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
𝑖𝑙
𝑘𝑗 =(︀

(Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
∘)︀𝑘𝑗

𝑖𝑙
+ [Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦)]

𝑖𝑙
𝑘𝑗

Expanding the commutator using the second formula we have

[Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦)]
𝑖𝑙
𝑘𝑗 = Φ2 (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

𝑘𝑙
𝑖𝑗 +

Ψ2 (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
𝑘𝑗
𝑖𝑙

Now the second term

(𝑥′Ψ3(𝑥
′′, 𝑦))

𝑖𝑗
𝑘𝑙 =

(︀
(𝑥′Ψ3(𝑥

′′, 𝑦))
∘)︀𝑘𝑙

𝑖𝑗
+ [𝑥′Ψ3(𝑥

′′, 𝑦)]
𝑖𝑗
𝑘𝑙

Applying the second formula (yes, here too) to the commutator, we get

[𝑥′Ψ3(𝑥
′′, 𝑦)]

𝑖𝑗
𝑘𝑙 = Φ2 (𝑥′Ψ3(𝑥

′′, 𝑦))
𝑘𝑗
𝑖𝑙 + Ψ2 (𝑥′Ψ3(𝑥

′′, 𝑦))
𝑘𝑙
𝑖𝑗

Collecting the terms we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ2(𝑥

′𝑥′′, 𝑦) = (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
∘

+ Φ2 (𝑥′Ψ3(𝑥
′′, 𝑦))

+Ψ2 (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
Ψ2(𝑥

′𝑥′′, 𝑦) = Ψ4(𝑥
′, 𝑦)𝑥′′ + Φ2 (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

+ (𝑥′Ψ3(𝑥
′′, 𝑦))

∘
+ Ψ2 (𝑥′Ψ3(𝑥

′′, 𝑦))

First formula. Here we need to convert (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))𝑖𝑙𝑘𝑗 and (Ψ4(𝑥
′, 𝑦)𝑥′′)𝑘𝑙𝑖𝑗 .

As above

(Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
𝑖𝑙
𝑘𝑗 =(︀

(Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
∘)︀𝑘𝑗

𝑖𝑙
+ [Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦)]

𝑖𝑙
𝑘𝑗

but here we expand the commutator using the fourth formula

[Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦)]
𝑖𝑙
𝑘𝑗 =

Φ4 (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
𝑖𝑗
𝑘𝑙 + Ψ4 (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

𝑘𝑗
𝑖𝑙

For the other term

(Ψ4(𝑥
′, 𝑦)𝑥′′)

𝑘𝑙
𝑖𝑗 =

(︀
(Ψ4(𝑥

′, 𝑦)𝑥′′)
∘)︀𝑖𝑗

𝑘𝑙
+ [(Ψ4(𝑥

′, 𝑦)𝑥′′)]
𝑘𝑙
𝑖𝑗

we expand the commutator using the fourth formula too

[(Ψ4(𝑥
′, 𝑦)𝑥′′)]

𝑘𝑙
𝑖𝑗 = Φ4 (Ψ4(𝑥

′, 𝑦)𝑥′′)
𝑘𝑗
𝑖𝑙 + Ψ4 (Ψ4(𝑥

′, 𝑦)𝑥′′)
𝑖𝑗
𝑘𝑙
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Collecting the terms we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ1(𝑥

′𝑥′′, 𝑦) = (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
∘

+ Φ4 (Ψ4(𝑥
′, 𝑦)𝑥′′)

+Ψ4 (Φ4(𝑥
′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥

′′, 𝑦))
Ψ1(𝑥

′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥
′′, 𝑦) + Φ4 (Φ4(𝑥

′, 𝑦)𝑥′′ + 𝑥′Φ3(𝑥
′′, 𝑦))

+ (Ψ4(𝑥
′, 𝑦)𝑥′′)

∘
+ Ψ4 (Ψ4(𝑥

′, 𝑦)𝑥′′)

3. Main results

3.1. Polynomial algebra identity. Suppose that our algebra is the polynomial ring, i.e.
Ω = 𝑘 [𝑥1, . . . , 𝑥𝑛]. Then the symmetric group 𝑆𝑛 acts on Ω by permuting the variables
and hence on 𝑈(gl𝑁(Ω))

Proposition 3.1.1. Take

𝑥 = 𝑥1 ⊗ 𝑥2 · · · ⊗ 𝑥𝑚, 𝑦 = 𝑥𝑚+1 ⊗ 𝑥𝑚+2 · · · ⊗ 𝑥𝑚+𝑛 ∈ 𝑇 (𝑘 [𝑥1, . . . , 𝑥𝑛+𝑚])

then ∑︁
𝜎∈𝑆𝑛+𝑚

(−1)𝜎𝜎([𝑥, 𝑦]) = 0

Proof. Induction on 𝑛+𝑚. The base case 𝑛 = 𝑚 = 1 follows from commutativity:

[𝑥, 𝑦]𝑖𝑗𝑘𝑙 = (𝜀� 𝑥𝑦 − 𝑦𝑥� 𝜀)𝑘𝑗𝑖𝑙 = (𝜀� 𝑦𝑥− 𝑥𝑦 � 𝜀)𝑘𝑗𝑖𝑙 = [𝑦, 𝑥]𝑖𝑗𝑘𝑙

Due to antisymmetry of the commutator, it suffices to do the inductive step in case𝑚 > 1.
Split the first word

𝑥 = 𝑥′𝑥′′

We won’t need explicit representation, so we will drop the indices. Apply the Leibniz rule∑︁
𝜎∈𝑆𝑛+𝑚

(−1)𝜎𝜎([𝑥′𝑥′′, 𝑦]) =
∑︁

𝜎∈𝑆𝑛+𝑚

(−1)𝜎𝜎([𝑥′, 𝑦]𝑥′′) +
∑︁

𝜎∈𝑆𝑛+𝑚

(−1)𝜎𝜎(𝑥′[𝑥′′, 𝑦])

We will show that the second sum vanishes, the first is done analogously. Let 𝑘 = 𝑙(𝑥′)
and note that

𝑆𝑛+𝑚−𝑘 →˓ 𝑆𝑛+𝑚

Where 𝑆𝑛+𝑚−𝑘 permutes 𝑥𝑘+1 . . . 𝑥𝑛+𝑚. Decompose

𝑆𝑛+𝑚 =
⨆︁

𝜎𝑙𝑆𝑛+𝑚−𝑘

into left cosets and expand the sum∑︁
(−1)𝜎𝜎(𝑥′[𝑥′′, 𝑦]) =

∑︁
𝑙=1,2...

𝜏∈𝑆𝑛+𝑚−𝑘

(−1)𝜎𝑙𝜏𝜎𝑙𝜏 (𝑥′[𝑥′′, 𝑦]) =

=
∑︁
𝑙

(−1)𝜎𝑙𝜎𝑙

⎛⎝ ∑︁
𝜏∈𝑆𝑛+𝑚−𝑘

(−1)𝜏𝜏(𝑥′[𝑥′′, 𝑦])

⎞⎠ =

=
∑︁
𝑙

(−1)𝜎𝑙𝜎𝑙

⎛⎝𝑥′ ∑︁
𝜏∈𝑆𝑛+𝑚−𝑘

(−1)𝜏𝜏([𝑥′′, 𝑦])

⎞⎠ = 0

because the inner sum vanishes by induction hypothesis. �
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3.2. Preservation of letter order. Throughout this subsection let the ground algebra
be the free algebra, i.e. Ω = C ⟨𝑥1, . . . , 𝑥𝑛⟩. The results in this subsection place combina-
torial constraints on which non-zero terms can appear in the Ψ part of the formula. For
convenience, let us introduce some terminology: take, for example, Φ1(𝑥, 𝑦). It is a sum
of terms of the form 𝑧′� 𝑧′′ with non-zero coefficients. We will call 𝑧′ the left part of each
term and 𝑧′′ the right part.

Proposition 3.2.1.

(1) For Ψ1(𝑥, 𝑦) the letters of 𝑦 appear only on the right side of each term

(2) For Ψ2(𝑥, 𝑦) the letters of 𝑦 appear only on the left side of each term

(3) For Ψ3(𝑥, 𝑦) the letters of 𝑥 appear only on the left side of each term

(4) For Ψ4(𝑥, 𝑦) the letters of 𝑥 appear only on the right side of each term

In the proposition above one easily sees that statements 1 and 4 as well as 2 and 3, are
equivalent to each other due to symmetries. So it suffices to just prove the 3rd and the
4th. We will be proving by induction on 𝑛 = 𝑙(𝑥) + 𝑙(𝑦), assuming all the four statements
hold whenever 𝑙(𝑎) + 𝑙(𝑏) < 𝑛. The base case 𝑙(𝑎) = 𝑙(𝑏) = 1 is trivial, because it can be
seen from base case formulas that the Ψ part is zero.

Proof. Induction step for the 3rd statement. Recall the formula for Ψ3:

Ψ3(𝑥
′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥

′′, 𝑦) + (Ψ4(𝑥
′, 𝑦)𝑥′′)

∘
+ Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)

We will show for each of the three summands that the letters of 𝑥 are contained on the
left side. For 𝑥′Ψ3(𝑥

′′, 𝑦) we have the letters of 𝑥′ concatenated to the left side and the
letters of 𝑥′′ are on the left side by induction. Similarly for Ψ4(𝑥

′, 𝑦)𝑥′′ the letters of 𝑥′′

are concatenated on right and letters of 𝑥′ appear on the right by induction. So when
we apply the swap operation ∘, the letters of 𝑥 will all be on the left for (Ψ4(𝑥

′, 𝑦)𝑥′′)∘.
And when we apply Ψ2, using the second statement by induction (which is possible, as
Ψ strictly lowers the total length), the letters which were on the right will be on the left.
Since letters of 𝑥 were contained in the right side, after Ψ2 they will appear on the left,
so we have also shown the property for Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′).
Induction for the 4th statement is proved in exactly the same way. The formula is

Ψ4(𝑥
′𝑥′′, 𝑦) = Ψ4(𝑥

′, 𝑦)𝑥′′ + (𝑥′Ψ3(𝑥
′′, 𝑦))

∘
+ Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))

For term Ψ4(𝑥
′, 𝑦)𝑥′′, 𝑥′ is on the right by induction and 𝑥′′ is concatenated on the right.

For 𝑥′Ψ3(𝑥
′′, 𝑦) we showed above that 𝑥 is on the left, so in (𝑥′Ψ3(𝑥

′′, 𝑦))∘ it’s on the right.
Finally, applying Ψ4 moves the left to the right, so since 𝑥 was contained on the left in
each term of 𝑥′Ψ3(𝑥

′′, 𝑦), it will be on the right in Ψ4 (𝑥′Ψ3(𝑥
′′, 𝑦)) �

Taking the same example as above, we are considering a term Φ1(𝑥, 𝑦). It has the form
𝑧′� 𝑧′′. Write out the letters of 𝑧′⊗ 𝑧′′ consecutively, so we will get 𝑧1, . . . , 𝑧𝑝. Each letter
𝑧𝑙 may contain several letters of 𝑥⊗ 𝑦, because two letters may be multiplied as elements
of Ω. Let’s say that two letters 𝑎 and 𝑏 have been glued with each in the term 𝑧′ � 𝑧′′, if
they both appear within one letter 𝑧𝑙 (not necessarily directly adjacent though). Also, for
convenience of the formulation of the following statement, let’s say that two letters 𝑎, 𝑏
are not glued if they aren’t glued in any of the terms. When we say that more than two
letters are not glued with each other, we mean that those letters aren’t glued with each
other pairwise.

Proposition 3.2.2.

(1) For Ψ1(𝑥, 𝑦) the letters of 𝑦 are not glued with each other

(2) For Ψ2(𝑥, 𝑦) the letters of 𝑦 are not glued with each other

(3) For Ψ3(𝑥, 𝑦) the letters of 𝑥 are not glued with each other
8



(4) For Ψ4(𝑥, 𝑦) the letters of 𝑥 are not glued with each other

Again, due to symmetries, it suffices to prove only the 3rd and the 4th statements. We
will also be using induction in the same way as above. The base case 𝑙(𝑥) = 𝑙(𝑦) = 1 is
trivial, because there is only one letter both in 𝑥 and in 𝑦.

Proof.

Ψ3(𝑥
′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥

′′, 𝑦) + (Ψ4(𝑥
′, 𝑦)𝑥′′)

∘
+ Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)

Ψ4(𝑥
′𝑥′′, 𝑦) = Ψ4(𝑥

′, 𝑦)𝑥′′ + (𝑥′Ψ3(𝑥
′′, 𝑦))

∘
+ Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))

As above, we will prove the property for each summand. Since we are proving the same
property for 3rd and 4th formulas, it is more concise to treat them at once (because some
summands are essentially the same). For 𝑥′Ψ3(𝑥

′′, 𝑦), 𝑥′ is concatenated, so its letters are
not glued to anythihg. Letters of 𝑥′′ are not glued to each other by induction. The swap
operation preserves this property, so it is still true for (𝑥′Ψ3(𝑥

′′, 𝑦))∘. The same reasoning
shows that letters of 𝑥 are not glued with each other in Ψ4(𝑥

′, 𝑦)𝑥′′ and (Ψ4(𝑥
′, 𝑦)𝑥′′)∘.

In the proof of the previous proposition, we have shown that the letters of 𝑥 will appear
on the right side of Ψ4(𝑥

′, 𝑦)𝑥′′, and as we have just shown, the letters of 𝑥 aren’t glued
with each other. So using the 2nd statement under the induction hypothesis, we obtain
that the letters of 𝑥 aren’t glued in Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′).
Similarly, the letters of 𝑥 are on the left and not glued with each other for 𝑥′Ψ3(𝑥

′′, 𝑦). Ap-
plying 4th statement by induction, we have that letters of 𝑥 aren’t glued in Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))
�

Let’s continue with the example of Φ1(𝑥, 𝑦) above. We take a term 𝑧′ � 𝑧′′ and we write
out the letters of 𝑧′, 𝑧′′ to obtain 𝑧1, . . . , 𝑧𝑝. Since we are working over the free algebra,
it makes sense to talk about the order of the letters of 𝑥, 𝑦 as they appear in 𝑧1, . . . , 𝑧𝑝,
despite some of the letters being glued (though in view of the above proposition, the
gluing will not even be a problem for the claim we are about to state). Let’s say that the
letters of 𝑦 appear in their original order, if they appear in their original order (i.e. as
𝑦1, 𝑦2 . . .) for all terms.

Proposition 3.2.3.

(1) For Ψ1(𝑥, 𝑦) the letters of 𝑦 appear in their original order

(2) For Ψ2(𝑥, 𝑦) the letters of 𝑦 appear in their original order

(3) For Ψ3(𝑥, 𝑦) the letters of 𝑥 appear in their original order

(4) For Ψ4(𝑥, 𝑦) the letters of 𝑥 appear in their original order

Proof. Again, using induction, the base case being trivial (because there is only one
possible order on one letter). Only need to prove 3rd and 4th due to symmetries, and as
in the last proposition, since the property we are trying to prove is the same for 3rd and
4th statements, we will prove it simultaneously for all terms that appear in the recursive
relations for Ψ3,Ψ4. Here are the expressions:

Ψ3(𝑥
′𝑥′′, 𝑦) = 𝑥′Ψ3(𝑥

′′, 𝑦) + (Ψ4(𝑥
′, 𝑦)𝑥′′)

∘
+ Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′)

Ψ4(𝑥
′𝑥′′, 𝑦) = Ψ4(𝑥

′, 𝑦)𝑥′′ + (𝑥′Ψ3(𝑥
′′, 𝑦))

∘
+ Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦))

The letters of 𝑥′ appear in their original order in 𝑥′Ψ3(𝑥
′′, 𝑦), as do letters of 𝑥′′ by

induction hypothesis. Since 𝑥′ is concatenated on the left, the letters of 𝑥′ are in correct
order w.r.t. letters of 𝑥′′. So altogether, letters of 𝑥 are in original order. In the proof
of proposition 3.2.1, we have shown that all letters of 𝑥 are on the left for 𝑥′Ψ3(𝑥

′′, 𝑦), so
after swap operation they will still be in the same order (as the swap operation preserves
order within either side). So letters of 𝑥 will be in original order for (𝑥′Ψ3(𝑥

′′, 𝑦))∘.
9



The same reasoning applies to Ψ4(𝑥
′, 𝑦)𝑥′′ and (Ψ4(𝑥

′, 𝑦)𝑥′′)∘.
From proof of proposition 3.2.1, 𝑥 is contained on the right for Ψ4(𝑥

′, 𝑦)𝑥′′. Using 2nd
statement from induction hypothesis, we see that if we take Ψ2, the letters of the right
side of each term will come in original order. Since letters of 𝑥 are on the right side of
every term, their order will be preserved, that is letters of 𝑥 come in original order for
Ψ2 (Ψ4(𝑥

′, 𝑦)𝑥′′).
Similarly, since letters of 𝑥 are on the left for 𝑥′Ψ3(𝑥

′′, 𝑦) and come in original order, using
4th statement by induction, letters of 𝑥 will be in original order for Ψ4 (𝑥′Ψ3(𝑥

′′, 𝑦)). �

3.2.1. Summary. Let’s make a summary of the three propositions we just proved, that
give combinatorial constraints on the Ψ part of our formulas.

(1) For Ψ1(𝑥, 𝑦) the letters of 𝑦 appear on the right side, in their original order and
are not glued together

(2) For Ψ2(𝑥, 𝑦) the letters of 𝑦 appear on the left side, in their original order and are
not glued together

(3) For Ψ3(𝑥, 𝑦) the letters of 𝑥 appear on the left side, in their original order and are
not glued together

(4) For Ψ4(𝑥, 𝑦) the letters of 𝑥 appear on the right side, in their original order and
are not glued together
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