Solvability of Equations in Elementary Functions

Introduction

The most general problem of solvability can be for-
mulated as follows: we have a set of "known quan-
tities' K and a set of "allowed' operations F. The
question is, can a given element be obtained from
K by repeatedly applying operations from F7 The
main approach to these questions is Galois theory
(algebraic, differential and topological), which con-
nects the problem of solvability to the properties of
an associated group and a method developed by Li-
ouville, where the idea is that either the solution is
'simple" or doesn’t exist [1].

Historical background

In 1770 Lagrange unified various methods for solving
polynomial equations in radicals [2]. The method re-
lied on Lagrange resolvents, which allowed to reduce
an equation to one of a lower degree. This method,
however, does not work for higher degrees, as the
new equation has a bigger degree than the origi-
nal polynomial. Lagrange’s work inspired Rufhini,
who made 6 publications in an attempt to prove
insolvability of equations of degree higher than 4,
the first publication made in 1799 and the last in
1813 [3|. The first accepted proof is due to Abel
4], published in 1824. Later in that decade, Galois
developed a general theory which could determine
whether a given equation is solvable by radicals [5].
(alois method connects the solvability of an equa-
tion with the solvability of its Galois group. In 1833
Liouville extended the works of Abel in 1823 about
expression of integrals in elementary functions |6
(Abel’s work "a general representation of the possi-
bility to integrate all differential formulas' was not
published). Around 1883-1904 Picard and Vessiot
associated a Galois group with differential equation,
to describe when it can be solved in quadratures and

this theory was further refined by Kolchin around
1950 [7]. In 1963 V.I. Arnold discovered a topologi-
cal proof of the Abel-Ruffini theorem (8], which was
the starting point of topological Galois theory, to
which this work is devoted.
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Notions from topological (Galois theory

o 'Known quantities" K = C(a), "allowed' operations F = {algebraic operations and elementary functions}

)

e Def. Monodromy group is the group acting on the roots of the equation when the parameter a makes
a loop.

e Monodromy group acting on an elementary function is cyclic.

e When the equation is solvable the monodromy group must be solvable.

My contribution

tanxr —xr = a r = a

e Calculated singular points e Transforms to equation x + e* = a

e Proved a lemma about the location of roots of
tan(x) —x = 0

e Singular points were calculated

e Action of paths around these point was calculated
e Calculated the action of the group for paths
around singular points

e Using transitivity it was shown that the group of
monodromy is the symmetric group, hence

e Proved that the monodromy group contained the unsolvable

alternating group

Main result 1

The equation tanx — x = a is not solvable in elementary functions |9

Main result 2

The equation x* = a is not solvable in elementary functions
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Figure 1: tanx — x = @ monodromy

Figure 2: ¥ = a monodromy
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